Preface

This document describes the algorithm used to encode and decode binary data as BLOBs in
GEDCOM files created by Ancestral Quest. The algorithm is based on Appendix E of the
GEDCOM 5.5 specification. The algorithm causes data corruption if the original binary data has
trailing 0x00 bytes or has a binary length which is not exactly divisible by 3.

Disclaimer
© Chronoplex Software 2020.

The information in this document is provided "as is" without warranty of any kind. Chronoplex
Software does not accept any responsibility or liability arising from the use of this document.

This document is not part of any official GEDCOM specification.
GEDCOM was created by The Church of Jesus Christ of Latter-Day Saints. The GEDCOM

specifications may be copied for the purpose of reviewing or programming of genealogical
software.



Encoding and Decoding
Algorithms for Multimedia
Objects (Ancestral Quest)

Introduction:
Embedded multimedia objects in GEDCOM require special handling. These objects are
normally represented by binary files which interfere with data transmission protocols. This

document describes how the binary data is encoded for transmission and then decoded to rebuild
the multimedia file.

Encoding:
Binary multimedia files are read in segments of 48 bytes. Each 48-byte segment is encoded into
a GEDCOM line value of 4 to 64 characters in length. This encoded value becomes the

<ENCODED_MULTIMEDIA_LINE> used in the MULTIMEDIA_RECORD (see page 26 of
the GEDCOM 5.5 specification).

The encoding algorithm can be accomplished using the following steps:
1. The segment of the binary multimedia file is read in chunks of 3-bytes.

2. The order of the bytes in each 3-byte (24-bit) chunk of the segment is reversed and then
divided into four 6-bit encoding keys in the range 0x00..0x3F.

3. The four 6-bit encoding keys are used to obtain four replacement characters from the
Encoding Table which are appended to the encoded line segment.

4. Special processing may be required for the last chunk which may contain fewer than 3

bytes.
Retrieved Action
a. 0 bytes: Do nothing. The encoding is complete.
b. 1 byte: Append two 0x00 bytes to the binary data and repeat steps 2 and 3.

C. 2 bytes: Append one 0x00 byte to the binary data and repeat steps 2 and 3.



Decoding:

The decoding routine converts an encoded line value back into a segment of the original binary
multimedia file.

The decoding algorithm can be accomplished using the following steps:
1. Each encoded line segment is read in chunks of four 8-bit characters.

2. Each character in the group becomes a decoding key used to look up a corresponding
byte from the Decoding Table. A new 24-bit group is formed by concatenating the low-
order 6 bits from each of the 4 bytes obtained from the Decoding Table.

3. This new 24-bit group is split into three bytes which are read right to left and appended
to the decoded line segment.



Encoding Table

Encoding Replacement Encoding Replacement Encoding Replacement

key character key character key character
0x00 : 0x0C A 0x26 a
0x01 / 0x0D B 0x27 b
0x02 0 Ox0E C 0x28 c
0x03 1 OxOF D 0x29 d
0x04 2 0x10 E 0x2A e
0x05 3 0x11 F 0x2B f
0x06 4 0x12 G 0x2C g
0x07 5 0x13 H 0x2D h
0x08 6 0x14 | Ox2E i
0x09 7 0x15 J Ox2F |
Ox0A 8 0x16 K 0x30 k
0x0B 9 0x17 L 0x31 I
0x18 M 0x32 m
0x19 N 0x33 n
Ox1A 0] 0x34 0
0x1B P 0x35 p
0x1C Q 0x36 q
0x1D R 0x37 r
Ox1E S 0x38 S
Ox1F T 0x39 t
0x20 U Ox3A u
0x21 \Y/ 0x3B v
0x22 w 0x3C w
0x23 X 0x3D X
0x24 Y Ox3E y
0x25 Z Ox3F z



Decoding Table

Decoding Replacement Decoding Replacement Decoding Replacement

key byte key byte key byte
. 0x00 A 0x0C a 0x26
/ 0x01 B 0x0D b 0x27
0 0x02 C Ox0E c 0x28
1 0x03 D OxOF d 0x29
2 0x04 E 0x10 e 0x2A
3 0x05 F 0x11 f 0x2B
4 0x06 G 0x12 g 0x2C
5 0x07 H 0x13 h 0x2D
6 0x08 I 0x14 i 0x2E
7 0x09 J 0x15 J Ox2F
8 Ox0A K 0x16 k 0x30
9 0x0B L 0x17 | 0x31
M 0x18 m 0x32

N 0x19 n 0x33

0] Ox1A 0 0x34

P 0x1B p 0x35

Q 0x1C q 0x36

R 0x1D r 0x37

S Ox1E S 0x38

T Ox1F t 0x39

U 0x20 u 0x3A

Vv 0x21 \Y 0x3B

W 0x22 w 0x3C

X 0x23 X 0x3D

Y 0x24 y Ox3E

Z 0x25 Z Ox3F



